A SE55C08 ## RESEARCH MEMORANDUM WINAVAILABLE REMOVED SEN 12958 Little 4-17-953/98 for the Air Research and Development Command, U. S. Air Force OVER-ALL PERFORMANCE OF J65-B3 TURBOJET ENGINE FOR REYNOLDS NUMBER INDICES FROM 0.8 TO 0.2 By D. B. Fenn and William L. Jones Lewis Flight Propulsion Laboratory Cleveland, Ohio Made Unamelle by Admin Action per Helper let ded 7-24-59/BAM CLASSIFIED DOCUMENT This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to unauthorized person is prohibited by law. # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON UNAVALLELA HINCLASSIFIED NASA Technical Library 3 1176 01438 5166 NACA RM SE55CO8 #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM for the Air Research and Development Command, U. S. Air Force OVER-ALL PERFORMANCE OF J65-B3 TURBOJET ENGINE FOR REYNOLDS NUMBER INDICES FROM 0.8 TO 0.2 By D. B. Fenn and William L. Jones #### SUMMARY The steady-state over-all performance characteristics of the J65-B3 turbojet engine were determined in an altitude test chamber for four exhaust-nozzle areas at Reynolds number indices of 0.8, 0.4, and 0.2. This range of Reynolds number indices corresponds to a range of altitudes from about sea level to 51,500 feet at a flight Mach number of 0.8. Generalized data are presented to allow calculation of engine performance at any flight condition corresponding to a Reynolds number index within the range investigated. Engine performance calculated from these generalized data is presented for seven altitudes over a range of flight speeds from zero to about 1100 knots. The use of an exhaust nozzle sized to give rated performance at sea level would permit operation near the point of minimum specific fuel consumption for a wide range of flight conditions and engine speeds. #### INTRODUCTION The performance characteristics of the J65-B3 turbojet engine were determined in an altitude test chamber at the NACA Lewis laboratory at the request of the Air Research and Development Command, U. S. Air Force. Preliminary altitude performance data with the rated exhaust-nozzle area, together with the operational limits and windmilling and starting characteristics of the engine, are contained in reference 1. The component performance of the engine is presented in reference 2, and the rotating-stall and blade-vibration characteristics of the compressor are reported in reference 3. COMPTENS The present report summarizes the over-all performance of the engine by presenting performance for a range of exhaust-nozzle areas, altitudes, and flight Mach numbers. Data are presented in terms of conventional generalized parameters for a range of corrected engine speeds from 6700 to 9200 rpm, Reynolds number indices from 0.8 to 0.2, and exhaust-nozzle areas from 1.90 to 2.51 square feet. These data permit calculation of performance at any operating condition where sonic (choked) flow exists in the exhaust nozzle. Over-all engine performance maps are presented for a flight Mach number of 0.7 at altitudes of 15,000, 35,000, and 50,000 feet. In addition, the altitude performance of the engine, calculated from generalized data for the rated exhaust nozzle (1.97 sq ft), is presented for a range of altitudes from sea level to 55,000 feet, flight speeds from zero to 1100 knots, and engine speeds from 7000 to 8300 rpm. The data are presented in both graphical and tabular form. #### **APPARATUS** #### Engine The J65-B3 turbojet engine (fig. 1) has a 13-stage axial-flow compressor, an annular prevaporizing-type combustion chamber, and a two-stage turbine. At military rated conditions, the engine speed is 8300 rpm and the turbine-discharge temperature is 1166° F. At sea-level static conditions with no compressor-inlet screen, the engine has a guaranteed thrust of 7220 pounds and specific fuel consumption of 0.92. The sea-level, static, rated air flow of the engine is approximately 118 pounds per second. The engine is $87\frac{5}{8}$ inches long from the compressor-inlet flange to the turbine exit and has a maximum diameter of $37\frac{3}{4}$ inches. The engine dry weight is 2785 pounds. The fuel used throughout this investigation was MIL-F-5624A, grade JP-4. #### Installation The engine was installed in an altitude test chamber as shown in figure 1. A bulkhead with a labyrinth seal around the front of the engine (fig. 2) was used to allow independent control of inlet and exhaust pressures. The laboratory air systems supplied combustion air to the engine and removed the exhaust gases. The engine was mounted on a thrust platform equipped with a null-type pneumatic balance. #### Instrumentation The location and amount of instrumentation used during this investigation are shown in figure 2. Total-pressure and -temperature probes were located at the centers of equal annular areas at various stations in the engine. Engine fuel flow was measured by calibrated rotometers. All pressures were measured with manometers and recorded photographically. Self-balancing potentiometers were used to record all temperatures. #### PROCEDURE With each of the four exhaust nozzles (1.90, 1.97, 2.07, and 2.51 sq ft) investigated, the engine was operated at inlet conditions corresponding to Reynolds number indices of 0.8, 0.4, and 0.2. At each Reynolds number index, the ram pressure ratio (P_2/P_0) was set close to the facility limit with the engine operating either at rated speed or limiting turbine-discharge temperature. The ram pressure ratio was then held constant while engine speed was reduced. This procedure was used in order to maintain sonic flow in the exhaust nozzle over as wide an engine-speed range as possible. When the exhaust nozzle is fully choked, the pressures and temperatures within the engine are independent of the ambient pressure. The symbols and methods of calculation used in this report are presented in appendixes A and B, respectively. #### RESULTS AND DISCUSSION Performance data are presented in terms of generalized parameters to show the effects of Reynolds number and to allow calculation of performance at specific flight conditions. To summarize the performance of this engine, performance maps were calculated from generalized data for the rated exhaust nozzle over a wide range of flight conditions. The exhaust-nozzle flow coefficients reported for this engine in reference 2 are essentially constant for nozzle pressure ratios in excess of 2.0. The corrected engine speed at which the exhaust-nozzle pressure ratio is equal to 2.0 is presented as a function of flight Mach number in figure 3 for the four exhaust nozzles investigated. Operation above the line for each nozzle area (choked) indicates the region where the exhaust-nozzle pressure ratio is 2.0 or higher. The operational limits of the engine with the rated exhaust nozzle at a flight Mach number of 0.8 are reproduced from reference 1 in figure 4. The operational limits include the engine speed for limiting turbine-discharge temperature, "idle" throttle position, lean combustion blow-out, and windmilling as functions of altitude. It can be seen from figure 4 that limiting turbine-discharge temperature occurred below rated engine speed for altitudes above 20,000 feet. The throttle position specified by the manufacturer as "idle" limited operation to altitudes below 67,000 feet. However, reductions in fuel flow below "idle" permitted steady-state operation up to a facility limit encountered at 75,000 feet. The shaded area superimposed on figure 4 illustrates the range of conditions over which performance can be calculated from the generalized data presented herein for the rated exhaust-nozzle area. The extent of this region is limited to altitudes below that corresponding to an inlet Reynolds number index of 0.2 and to engine speeds above that required to reach an exhaust-nozzle pressure ratio of 2.0. This shaded area covers the major portion of the practical operating conditions of the engine within the range of Reynolds number indices investigated. The numerical examples contained in appendix C illustrate calculation procedures that may be used to obtain performance within the region where the exhaust-nozzle flow coefficient is constant. If performance data are required in the region where the exhaust-nozzle flow coefficient is not constant, the method reported in reference 4 may be used. #### Generalized Performance Air flow. - Corrected engine inlet air flow is presented as a function of corrected engine speed in figure 5 for a range of Reynolds number indices from 0.8 to 0.2 and exhaust-nozzle areas from 1.90 to 2.51 square feet. Within the range of variables included in this investigation, no consistant variation of corrected air flow with either Reynolds number index or exhaust-nozzle area could be detected. At sea-level static and military rated conditions the air flow of the engine used for this investigation was about 4 percent higher than the manufacturer's specifications. Pumping characteristics. - The variation of engine total-pressure ratio with corrected engine speed at a Reynolds number index of 0.4 is shown in figure 6 for the four exhaust nozzles investigated. Lines for exhaust-nozzle areas other than those included in this investigation and lines of constant engine temperature ratio have been cross-plotted onto this figure to facilitate calculation of engine performance at specific flight conditions. An inlet Reynolds number index of 0.4 was selected for the presentation of these engine pumping characteristics because the widest range of corrected engine speeds was obtained at this condition. The effects of Reynolds number on engine pumping characteristics are shown in figure 7. In this figure engine total-pressure and -temperature ratios are divided by their respective values for the same corrected engine speed and exhaust-nozzle area at a Reynolds number index of 0.4. Although it is not generally possible to draw single curves to show Reynolds number effects on pumping characteristics, in this instance the variations with both corrected engine speed and exhaust-nozzle area were less than 1 percent from the mean. As Reynolds number index is decreased from 0.8 to 0.2 at a given corrected engine speed and exhaust-nozzle area, the engine total-pressure and -temperature ratios increased approximately 4 and 8 percent, respectively. Thrust. - As shown in reference 5, the jet thrust obtained from an engine with a choked exhaust nozzle can be correlated by the following relation: $$\frac{F_{j}}{A_{n}} = C_{F} \left[(\gamma + 1) \left(\frac{2}{\gamma + 1} \right)^{\gamma - 1} P_{9} - p_{0} \right]$$ (1) For nonafterburning operation, the average value of $(\gamma + 1) \left(\frac{2}{\gamma + 1}\right)^{\gamma - 1}$ was found to be 1.26. The correlation of the jet thrust per unit of exhaust-nozzle area is presented in figure 8 for a range of Reynolds number indices from 0.8 to 0.2 and exhaust-nozzle areas from 1.90 to 2.51 square feet. The slope of the mean line through the data yields a value for the thrust coefficient $C_{\rm F}$ of 0.98. This thrust correlation may be used in conjunction with engine pumping characteristics to predict the jet thrust of the engine at any operating condition where sonic flow exists in the exhaust nozzle. Combustion efficiency. - Combustion efficiency of several engines has been shown to generalize with the empirical parameter $\rm pt/V$ (ref. 6). However, the parameter $\rm W_{a,2}T_9$ is used herein because it is proportional to $\rm pt/V$ (ref. 7) and is more convenient for calculation purposes. The variation of combustion efficiency with $\rm W_{a,2}T_9$ is presented in figure 9 for all the Reynolds number indices and exhaust-nozzle areas included in this investigation. The combustion efficiency obtained from figure 9 can be used together with engine air flow and pumping characteristics to calculate the engine fuel requirement as shown in appendix C. #### Performance Calculated from Generalized Data Performance maps. - Over-all engine performance was calculated from generalized data for a flight Mach number of 0.7 and altitudes of 15,000, 35,000, and 50,000 feet assuming NACA standard flight conditions. These calculations included the four exhaust nozzles investigated and are presented in the form of performance maps in figure 10. Performance maps are defined by the relation between exhaust-gas total temperature and engine speed for selected values of exhaust-nozzle area, net thrust, and specific fuel consumption. These maps not only afford a convenient method of presenting a large amount of data but also show the location of specific-fuel-consumption contours. Because the total variation in specific fuel consumption was small for this engine at a given flight condition, the precise location and shape of the contours is uncertain. Although the 2.07-square-foot exhaust nozzle gave minimum specific fuel consumption, it can be seen that the use of the rated exhaust nozzle (1.97 sq ft) would result in operation very close to the minimum throughout the range of Reynolds number indices investigated. Altitude performance. - Data for the altitude performance were calculated from the generalized performance data for the rated exhaust nozzle at altitudes from sea level to 55,000 feet, flight speeds from zero to 1100 knots, and engine speeds from 7000 to 8300 rpm. These charts (fig. 11) show the variation of net thrust with the true air speed at each altitude. Superimposed are lines of constant engine speed, fuel flow, and air flow. The highest flight speed on each chart corresponds to the flight Mach number at which the limiting compressor inlet temperature ($T_2 = 200^{\circ}$ F) is reached. In addition, there is a line on each chart corresponding to the engine speed at which the exhaust gas reached an average total temperature of 1166° F. The sea-level performance chart (fig. 11(a)) shows for zero ram and rated conditions that the engine used for this investigation produced approximately 7700 pounds of thrust with about 123 pounds per second of air flow and a specific fuel consumption of 0.91 pound per hour per pound of thrust. #### SUMMARY OF RESULTS The over-all performance of the J65-B3 turbojet engine was determined over a range of Reynolds number indices from 0.8 to 0.2 and exhaust-nozzle areas from 1.90 to 2.51 square feet. With the rated exhaust nozzle (1.97 sq ft), the sea-level static performance of the engine operating at rated speed was: thrust, 7700 pounds; air flow, 123 pounds per second; and specific fuel consumption, 0.91 pound per hour per pound of thrust. The variation of specific fuel consumption with both exhaust-nozzle area and engine speed was small for a particular flight condition. The use of the rated exhaust nozzle permitted operation close to the point of minimum specific fuel consumption for a wide range of flight conditions. At a constant corrected engine speed and exhaust-nozzle area, decreasing Reynolds number index from 0.8 to 0.2 resulted in an increase in engine total-pressure and -temperature ratios of 4 and 8 percent, respectively. Within the range of variables included in this investigation, no consistent variation of corrected air flow with either Reynolds number index or exhaust-nozzle area could be detected. The engine was operated with the rated exhaust nozzle at a flight Mach number of 0.8 up to a facility limit encountered at 75,000 feet. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, March 9, 1955 #### APPENDIX A #### SYMBOLS The following symbols are used in this report: - A area, sq ft - Cd flow coefficient - thrust coefficient ratio of scale jet thrust to ideal jet thrust (product of ideal mass flow and ideal effective velocity) - C₊ thermal expansion coefficient - F; jet thrust, lb - F net thrust, lb - f fuel-air ratio - g acceleration due to gravity, 32.2 ft/sec² - Hg enthalpy, Btu/lb - M Mach number - N engine speed, rpm - P total pressure, lb/sq ft abs - p static pressure, lb/sq ft abs - R gas constant, 53.3 ft-lb/(lb)(OR) - Re; Reynolds number index, $\delta/\phi \sqrt{\theta}$ - T total temperature, OR - t static temperature, OR - v velocity, ft/sec or knots - Wa air flow, lb/sec - Wf fuel flow, lb/hr - γ ratio of specific heats - δ ratio of total pressure to NACA standard sea-level static pressure - η_{h} combustion efficiency - θ ratio of total temperature to NACA standard sea-level static temperature #### Subscripts: - O free stream - l engine inlet duct - 2 compressor inlet - 3 compressor outlet - 4 turbine inlet - 5 turbine outlet - 9 exhaust-nozzle inlet - cr critical - f fuel - i ideal - n exhaust nozzle - ob overboard - s scale #### APPENDIX B #### GENERALIZED DATA Air flow. - Engine inlet air flow was determined from the sum of exhaust-nozzle-exit weight flow, engine fuel flow, and compressor overboard air flow: $$W_{a,2} = \frac{p_{cr}A_{n}C_{t}C_{d}}{\sqrt{RT_{9}}} \sqrt{\frac{2g\gamma}{\gamma - 1} \left[1 - \left(\frac{p_{cr}}{P_{9}}\right)^{\gamma}\right] \left(\frac{P_{9}}{p_{cr}}\right)^{\gamma}} - \frac{W_{f}}{3600} + W_{a,ob}$$ where γ was determined from fuel-air ratio and T_9 as described in reference 8. The exhaust-nozzle flow coefficients were taken from reference 2. Combustion efficiency. - Combustion efficiency was defined as the ratio of the actual to ideal enthalpy rise across the engine: $$\eta_{b} = \frac{\Delta H_{a}}{1} \frac{9}{2} + f \left[\frac{A_{m} + B}{m+1} \right]_{T_{f}}^{9} - \frac{W_{a,ob}}{W_{a,2}} \Delta H_{a} \right]_{ob}^{9}$$ The term $\frac{A_m + B}{m+1}$ accounts for the difference between the enthalpy of carbon dioxide and water vapor in the burned mixture and the enthalpy of the oxygen removed from the air by their formation (ref. 9). Scale jet thrust. - Jet thrust was determined from an algebraic summation of the forces acting on the engine. Because the bellmouth was attached to the front bulkhead instead of the engine inlet duct (fig. 2), the force due to the momentum of the inlet air was included: $$F_{j,s} = F_d + \frac{W_{a,2}}{g} V_1 + A_{seal}(p_1 - p_{tank})$$ where \mathbf{F}_{d} is the force due to the null-type balance and $\mathbf{A}_{\mathrm{seal}}$ is the effective area of the inlet duct at station 1. #### Performance Maps True air speed. - True air speed was calculated from the total and static pressures and temperatures corresponding to each flight condition assuming no inlet total-pressure loss: $$V_{O} = \sqrt{\frac{2\gamma gRt_{O}}{\gamma - 1} \left[\left(\frac{P_{2}}{p_{O}} \right)^{\gamma} - 1 \right]}$$ Pumping characteristics, air flow, and fuel flow. - Engine total-pressure and -temperature ratios were determined from plots of these parameters against corrected engine speed for the four exhaust nozzles and three Reynolds number indices investigated. Engine inlet air flow was obtained by "uncorrecting" values read from figure 5. Fuel flow was determined from plots of corrected fuel flow against corrected engine speed, because the flight conditions selected for the performance maps closely approximated the conditions at which the data were obtained. Thrust. - Jet thrust was calculated from the exhaust-nozzle pressure-drop parameter: $$F_{i} = A_{n}C_{F}(1.26 P_{9} - P_{0})$$ The measured exhaust-nozzle thrust coefficients tabulated as follows were used: | Exhaust-
nozzle
area,
sq ft | Thrust
coefficient | |--------------------------------------|-----------------------| | 1.90
1.97
2.07
2.51 | 0.97
.98
.98 | Net thrust is defined as the change in momentum imposed on the working fluid by the engine: $$F_n = F_j - \frac{W_{a,2}}{g} V_0$$ Altitude performance. - The calculation of true air speed, air flow, and engine pumping characteristics was the same for the altitude performance and performance maps. Fuel flow. - The fuel requirement of the engine was determined from the following relation: $$W_{f} = \frac{f_{i}}{\eta_{b}} 3600 W_{a,2}$$ The ideal fuel-air ratio was obtained from references 9 and 10 and is presented in figure 12. Engine combustion efficiency was obtained from figure 9. Thrust. - Jet thrust was calculated as follows: $$F_{j} = \frac{(W_{a,2} - W_{a,ob} + W_{f})}{g} V_{n} + A_{n}(p_{n} - p_{0})$$ This equation was solved using the method of reference 8 and an effective velocity coefficient of 0.99. #### APPENDIX C #### NUMERICAL EXAMPLES To illustrate the method of obtaining engine performance from generalized data, the following numerical examples are presented: #### Case I For the case when engine speed and exhaust-nozzle area are known, sea-level static operation of the engine at rated engine speed with the rated exhaust-nozzle area was selected. The following are known: $$N = 8300 \text{ rpm}$$ $A_n = 1.97 \text{ sq ft}$ $P_2 = 2116 \text{ lb/sq ft abs}$ $P_0 = 2116 \text{ lb/sq ft abs}$ $T_2 = 519^0 \text{ R}$ $t_0 = 519^0 \text{ R}$ The following may be calculated: $$\sqrt{\theta_2} = 1$$ $\delta_2 = 1$ $Re_i = \frac{P_2(T_2 + 216)}{5.774 T_2^2} = 1.0$ $N/\sqrt{\theta} = 8300 \text{ rpm}$ $V_0 = M\sqrt{gRrt_0} = 0$ From figure 5: $$\frac{W_{a,2}\sqrt{\theta}}{\delta} = 122.5 \text{ lb/sec}$$ $W_{a,2} = 122.5 \text{ lb/sec}$ From figure 6 the pumping characteristics at a Reynolds number index of 0.4 are: $$P_9/P_2 = 2.315$$ $$T_9/T_2 = 3.22$$ The pumping characteristics can now be adjusted for Reynolds number effects using figure 7: $$\frac{(P_9/P_2)_{Re_i=1}}{(P_9/P_2)_{Re_i=0.4}} = 0.99$$ $$\frac{(T_9/T_2)_{\text{Re}_1=1.0}}{(T_9/T_2)_{\text{Re}_1=0.4}} = 0.976$$ Then: $$(P_9/P_2)_{Re_1=1} = 2.315 \times 0.99 = 2.29$$ $$(T_9/T_2)_{Re_i=1} = 3.22 \times 0.976 = 3.14$$ and $$P_9 = 2.29 \times 2116 = 4846 \text{ lb/sq ft abs}$$ $T_9 = 3.14 \times 519 = 1629^{\circ} \text{ R}$ Jet thrust can be obtained from figure 8 as follows: $$\frac{F_j}{A_n c_F} = 1.26 P_9 - P_0$$ $$F_j = 1.97 \times 0.98(1.26 \times 4846 - 2116)$$ $$F_j = 7700 lb$$ Net thrust: $$F_n = F_j - \frac{W_{a,2}}{g} V_0 = 7700 \text{ lb}$$ To calculate the fuel requirement of the engine, the following steps are necessary: The ideal fuel-air ratio from figure 12 is $f_i = 0.0157$ From figure 9, the combustion efficiency is $\eta_b = 0.99$ Dividing the ideal fuel-air ratio by combustion efficiency to obtain the actual fuel-air ratio gives: $$f = \frac{0.0157}{0.099} = 0.0159$$ Then: $$W_f = f \times W_{a,2} \times 3600$$ $W_r = 0.0159 \times 122.5 \times 3600 = 7012 lb/hr$ The specific fuel consumption can then be determined as $$sfc = \frac{W_f}{F_n} = \frac{7012}{7700} = 0.91$$ Case II For the case when engine speed and turbine-discharge temperature are known, the calculation procedure is identical to Case I except for the method of determining pumping characteristics. To illustrate this difference, the following conditions were selected: $$P_2 = 1656 \text{ lb/sq ft abs}$$ $T_2 = 511^{\circ} \text{ R}$ $T_9 = 1625^{\circ} \text{ R}$ $N = 8300 \text{ rpm}$ The following may be calculated: $$N/\sqrt{\theta} = 8350 \text{ rpm}$$ $T_9/T_2 = 3.18$ $Re_i = 0.8$ Engine temperature ratio can be adjusted to a Reynolds number index of 0.4 using figure 7: $$\left(\frac{T_9}{T_2}\right)_{\text{Re}_1=0.4} = \frac{3.18}{0.976} = 3.26$$ Entering figure 6 with corrected engine speed and the adjusted temperature ratio gives: $$(P_9/P_2)_{Re_i=0.4} = 2.335$$ $$A_{n} = 1.97$$ The engine total-pressure ratio can be adjusted for Reynolds number effects using figure 7: $$(P_9/P_2)_{Re_1=0.8} = 2.335 \times 0.99 = 2.32$$ #### REFERENCES - 1. Braithwaite, W. M., and Greathouse, W. K.: Preliminary Altitude Performance Data for the J65-B3 Turbojet Engine at Reynolds Number Indices from 0.2 to 0.8. NACA RM SE54H18, 1954. - 2. Ciepluch, Carl C., and Sivo, Joseph N.: Component Performance of J65-B3 Turbojet Engine at Several Reynolds Number Indices. NACA RM SE54K24a, 1954. - 3. Calvert, Howard F., Braithwaite, Willis M., and Medeiros, Arthur A.: Rotating-Stall and Rotor-Blade-Vibration Survey of a 13-Stage AxialFlow Compressor in a Turbojet Engine. NACA RM E54J18, 1954. - 4. Kaufman, Harold R., and Dobson, Wilbur F.: Performance of YJ73-GE-3 Turbojet Engine in Altitude Test Chamber. NACA RM E54F22, 1955. - 5. Sivo, Joseph N., and Fenn, David B.: A Method of Measuring Jet Thrust of Turbojet Engines in Flight Installations. NACA RM E53J15, 1954. - 6. Childs, J. Howard: Preliminary Correlation of Efficiency of Aircraft Gas-Turbine Combustors for Different Operating Conditions. NACA RM E50F15, 1950. CN-3 - 7. McAulay, John E., and Kaufman, Harold R.: Altitude Wind Tunnel Investigation of the Prototype J40-WE-8 Turbojet Engine Without Afterburner. NACA RM E52KlO, 1953. - 8. Turner, L. Richard, Addie, Albert N., and Zimmerman, Richard H.: Charts for the Analysis of One-Dimensional Steady Compressible Flow. NACA TN 1419, 1948. - 9. Turner, L. Richard, and Bogart, Donald: Constant-Pressure Combustion Charts Including Effects of Diluent Addition. NACA Rep. 937, 1949. (Supersedes NACA TN's 1086 and 1655.) - 10. Huff, Vearl N., Gordon, Sanford, and Morrell, Virginia E.: General Method and Thermodynamic Tables for Computation of Equilibrium Composition and Temperature of Chemical Reactions. NACA Rep. 1037, 1951. (Supersedes NACA TN's 2113 and 2161.) TABLE I. - COMPONENT PERFORMANCE OF J65-B3 TURBOJET ENGINE | Engine-
inlet
Reynolds
number
index,
Re | Inlet total pressure, P2, Ib sq ft abs | Inlet
total
temper-
ature,
T2, | Engine-
exhaust-
ambient
pressure,
po,
1b
sq ft abs | Compressor-
outlet
total
pressure,
Ps,
1b
sq ft abs | Compressor outlet total temper-ature, | Turbine- inlet total pressure, P4, lb sq ft abs | Turbine- inlet total temper- ature, Ti, OR | Turbine- outlet total pressure, P5, lb sq ft abs | Exhaust- nozzle inlet total temper- ature, Tg' OR | Exhaust- nozzle inlet total pressure, Pg, lb sq ft abs | Engine-
inlet
air
flow,
Wa,2'
lb/sec | Over-
board
air
flow,
Wa,ob,
lb/sec | Combus-
tor
effi-
ciency,
N _b | Fuel
flow,
Wf,
lb/hr | Engine
speed,
N,
rpm | Scale
jet
thrust
Fj,s,
lb | |--|--|--|---|---|---------------------------------------|---|--|--|---|--|---|--|--|--|--------------------------------------|---------------------------------------| | Exhâust nozzle area, 1.90 sq ft | | | | | | | | | | | | | | | | | | 0.796
.798
.795
.796
.796 | 1762
1766
1758
1729
1761 | 537
537
537
530
537 | 801
803
808
781
804 | 4,858
5,895
6,028
6,637
7,241 | 765
802
806
820
846 | 4,646
5,631
5,760
6,346
6,934 | 1087
1258
1277
1377
1460 | 1748
2121
2158
2387
2605 | 861
1001
1016
1100
1167 | 1687
2048
2087
2309
2541 | 56.27
63.21
63.95
67.78
72.40 | 0.90
.99
1.02
1.00 | 0.955
.977
.975
.989
.997 | 880
1415
1483
1856
2185 | 5978
6357
6387
6597
6779 | 2395
3242
3416
3938
4349 | | .802
.793
.797
.792
.792 | 1729
1754
1735
1715
1717 | 527
537
531
529
529 | 787
807
804
786
787 | 7,312
8,520
9,214
10,437
10,877 | 838
888
906
944
956 | 6,999
8,181
8,851
10,040
10,462 | 1464
1657
1778
1960
2008 | 2622
3080
3337
3806
3950 | 1170
1334
1437
1593
1631 | 2543
3011
3264
3721
3861 | 72.21
80.00
83.08
89.93
92.17 | 1.02
1.21
1.22
1.23
1.24 | .977
.997
.997
1.002
.998 | 2221
3101
3704
4744
5079 | 6796
7170
7394
7786
7911 | 4416
5461
6118
7174
7476 | | .399
.394
.402
.399
.398 | 625
621
623
626
626 | 413
412
413
413
414 | 307
310
313
311
310 | 2,529
2,732
2,905
3,351
3,630 | 653
668
684
714
734 | 2,424
2,621
2,786
3,213
3,491 | 1140
1211
1283
1416
1498 | 915
985
1051
1211
1309 | 905
962
1023
1132
1201 | 685
952
1019
1174
1275 | 28.66
29.89
30.98
33.83
35:56 | .39
.42
.42
.45 | .973
.969
1.007
.987
.997 | 670
792
907
1184
1385 | 5925
6053
6209
6517
6708 | 1441
1551
1823
2128
2368 | | .398
.399
.395
.397 | 626
627
615
624
617 | 414
414
411
414
413 | 308
305
307
309
304 | 3,987
4,103
4,342
4,644
4,716 | 768
770
785
809
816 | 3,834
3,946
4,187
4,484
4,533 | 1619
1659
1735
1848
1888 | 1438
1495
1568
1690
1721 | 1295
1335
1397
1497
1532 | 1402
1454
1531
1645
1680 | 37.63
38.40
39.54
40.91
41.30 | .47
.46
.52
.50 | .995
1.011
.973
.998
1.000 | 1625
1707
1991
2177
2279 | 6978
7093
7298
7548
7637 | 2671
2820
2981
3238
3331 | | .393
.193
.188
.191
.190 | 621
300
299
297
294 | 416
411
411
411
410 | 310
138
138
138
138 | 4,918
1,543
1,631
1,770
1,912 | 835
712
716
740
757 | 4,757
1,486
1,571
1,703
1,838 | 1967
1402
1455
1567
1642 | 1797
556
586
638
688 | 1601
1117
1169
1264
1325 | 1752
538
568
619
669 | 42.15
15.59
16.09
16.79
17.70 | .53
.19
.20
.20
.21 | .991
.968
.966
.958 | 2475
541
602
720
834 | 7795
6323
6442
6694
6864 | 3490
966
999
1152
1255 | | .187
.192
.192
.194
.194 | 301
302
302
307
305 | 410
409
411
413
415 | 140
138
137
137
135 | 2,130
2,253
2,279
2,391
2,443 | 784
798
814
821
831 | 2,047
2,168
2,201
2,231
2,362 | 1770
1849
1914
1944
1981 | 773
745
826
864
888 | 1434
1504
1558
1586
1618 | 752
792
804
841
864 | 19.12
19.65
19.56
20.28
20.62 | .22
.23
.23
.23
.24 | .997
.948
.963
.979
1.000 | 991
1105
1165
1230
1280 | 7126
7323
7491
7548
7617 | 1395
1551
1612
1669
1726 | | | -1 | | | | - | Exhaust no | zzle area | , 1.97 sq 1 | ſŧ | | | | | | | | | 0.797
.800
.797
.795
.800 | 1748
1755
1749
1747
1759 | 534
534
534
535
535 | 800
795
805
800
805 | 5,301
6,198
6,763
7,441
8,469 | 779
808
827
849
883 | 5,078
5,928
6,473
7,119
8,119 | 1111
1229
1321
1414
1567 | 1813
2106
2294
2530
2883 | 869
961
1039
1114
1241 | 1744
2021
2210
2440
2805 | 60.08
66.50
69.91
74.40
80.83 | 0.92
1.00
1.04
1.09
1.16 | 0.951
.970
.978
.992 | 991
1421
1725
2102
2770 | 6205
6507
6696
6886
7239 | 2597
3393
3788
4379
5282 | | .799
.796
.802
.798
.400 | 1753
1746
1755
1738
612 | 534
534
533
531
406 | 793
804
790
789
515 | 9,155
10,234
11,521
11,507
2,647 | 906
943
978
978
956 | 8,793
9,839
11,093
11,055
2,540 | 1665
1826
2001
2000
115 0 | 3119
3486
3949
3954
926 | 1323
1457
1605
1604
905 | 3042
3399
3835
3849
894 | 84.55
89.98
96.52
96.91
30.23 | 1.18
1.26
1.33
1.32 | .975
.996
.987
.986 | 3253
4138
5230
5259
725 | 7440
7807
8199
8239
6024 | 5911
6829
7989
8003
1177 | | .402
.401
.395
.397 | 612
606
599
604
604 | 404
402
403
404
406 | 509
501
498
500
495 | 3,010
3,066
3,322
3,566
3,843 | 680
682
703
725
746 | 2,894
2,944
3,191
3,422
3,695 | 1242
1260
1345
1424
1516 | 1028
1032
1112
1199
1313 | 979
990
1059
1132
1200 | 998
1003
1082
1169
1282 | 32.41
32.38
33.74
35.19
37.41 | .44
.43
.45
.46
.47 | .959
.948
.958
 | 907
938
1093
1285
1454 | 6300
6349
6513
6795
7010 | 1474
1510
1740
1943
2135 | | .396
.401
.390
.395
.195 | 637
626
641
624
309 | 429
412
428
416
416 | 541
530
542
523
176 | 4,461
4,354
4,708
5,170
1,720 | 808
785
835
873
735 | 4,290
4,201
4,542
5,004
1,655 | 1708
1660
1809
2016
1444 | 1500
1475
1606
1795
580 | 1364
1319
1444
1619
1144 | 1463
1433
1563
1746
563 | 39.97
39178
41737
43.50
17001 | .54
.48
.48
.53 | .973
.987
.997
.970 | 1862
1766
2064
2686
607 | 7470
7387
7753
8278
6653 | 2541
2528
2800
3335
1030 | | .194
.197
.201
.199 | 309
309
315
311
304 | 419
413
413
413
413 | 147
154
150
145
151 | 1,729
1,890
2,068
2,304
2,431 | 736
752
775
809
839 | 1,662
1,818
1,987
2,223
2,347 | 1452
1534
1635
1798
1937 | 585
636
700
789
829 | 1155
1218
1309
1446
-1561 | 567
619
683
770
809 | 16.90
17.93
19.04
20738
20.57 | .21
.28
.24
.25
.27 | .969
.963
.958
.967 | 612
720
<u>860</u>
1065
12 18 | 6675
6854
7118
7495
7815 | 1113
1206
1396
1610
1654 | TABLE I. - Concluded. COMPONENT PERFORMANCE OF J65-B3 TURBOJET ENGINE | | | _ | | | | | | | | | | | • | - | | • | |---|---|---|---|--|--|--|--|--|---|--|---|--|---|--|--|--| | Engine-
inlet
Reynolds
number
index,
Re ₁ | Inlet
total
pressure,
P2,
15
sq ft abs | Inlet
total
temper-
ature,
T ₂ ,
o _R | Engine-
exhaust-
ambient
pressure,
Po,
1b
sq ft abs | Compressor outlet total pressure, P3, 1b sq ft abs | Compressor outlet total temper-ature, | Turbine- inlet total pressure, P4, lb sq ft abs | Turbine- inlet total temper- ature, T4, OR | Turbine- outlet total pressure, P5, lb sq ft abs | Exhaust- nozzle inlet total temper- ature, Tg, oR | Exhaust- nozzle inlet total pressure, Pg, lb sq ft abs | Engine-
inlet
air
flow,
Wa,2'
lb/sec | Over-
board
air
flow,
Wa,ob,
lb/sec | combus-
tor
effi-
ciency,
n | Fuel
flow,
W _f ,
lb/hr | Engine
speed,
N,
rpm | Scale jet thrust, Fj,s, | | Exhaust nozzle area, 2.07 sq ft | | | | | | | | | | | | | | | | | | 0.796
.794
.797
.798
.797 | 1741
1738
1741
1743
1735 | 533
533
532
532
531 | 796
797
796
802
798 | 6,274
7,478
8,693
9,886
10,408 | 813
851
890
929
948 | 5,969
7,139
8,315
9,469
9,984 | 1215
1376
1538
1696
1787 | 2025
2406
2779
3178
3373 | 940
1071
1202
1336
1407 | 1937
2314
2688
3083
3268 | 68.08
76.02
83.17
90.03
92.90 | 0.96
1.05
1.12
1.20
1.22 | 0.975
.993
.999
.985 | 1337
1959
2679
3553
4018 | 6610
7004
7404
7799
7996 | 3340
4273
5280
6289
6834 | | .797
.395
.400
.396
.398 | 1736
613
619
610
613 | 530
410
409
408
408 | 809
303
308
305
306 | 11,265
2,585
2,853
3,129
3,286 | 973
655
674
693
704 | 11,122
2,478
2,734
3,000
3,154 | 1913
1056
1143
1229
1276 | 3681
820
912
1001
1040 | 1516
822
885
953
991 | 3556
786
880
969
1007 | 97.31
29.52
31.82
33.72
34.35 | 1.33
.39
.42
.44
.45 | 1.00
.964
.963
.965 | 4732
588
735
894
987 | 8290
6057
8252
6481
6619 | 7507
1367
1600
1810
1974 | | .397
.401
.393
.401
.395 | 635
640
604
638
610 | 420
419
407
418
409 | 321
325
303
317
308 | 3,645
3,801
3,793
4,163
4,067 | 744
751
745
775
761 | 3,496
3,643
3,640
3,996
3,905 | 1377
1419
1445
1525
1509 | 1173
1229
1217
1339
1313 | 1070
1106
1129
1193
1182 | 1131
1188
1181
1298
1275 | 37.04
38.23
37.62
40.12
39.61 | .44
.46
.47
.48 | .967
.971
.969
.978 | 1180
1285
1333
1522
1505 | 6913
7010
7071
7292
7316 | 2236
2339
2422
2666
2623 | | .398
.397
.398
.397
.193 | 613
614
621
618
323 | 408
409
419
411
430 | 305
308
311
304
160 | 4,251
4,478
4,725
4,755
1,497 | 777
800
842
833
711 | 4,085
4,313
4,560
4,587
1,439 | 1574
1666
1797
1802
1235 | 1372
1448
1539
1548
485 | 1234
1310
1419
1424
963 | 1331
1403
1489
1498
465 | 40.42
41.30
42.03
42.31
16.07 | .49
.49
.48
.49 | .983
.985
.988
.987
.972 | 1630
1825
2075
2120
415 | 7424
7680
8000
7984
6369 | 2784
2931
3194
3221
817 | | .194
.194
.194
.195
.195 | 320
309
308
311
312
314 | 429
418
418
419
420
422 | 158
162
163
157
154
155 | 1,706
2,062
2,254
2,406
2,523
2,608 | 743
783
814
851
865
890 | 1,641
1,981
2,171
2,320
2,436
2,514 | 1366
1582
1714
1850
1937 | 545
666
735
785
826
859 | 1068
1245
1356
1465
1542
1636 | 526
646
714
761
800
831 | 17.24
19.50
20.40
21.12
21.61
21.73 | .20
.24
.24
.25
.25 | .958
.968
.958
.967
.966 | 545
802
970
1120
1240
1360 | 6692
7241
7596
7886
8097
8312 | 995
1297
1416
1598
1704
1778 | | | | | | | E | xhaust noz | zle area, | 2.51 sq f | t | L | | | | | | | | 0.797
.798
.794
.797
.793 | 1728
1729
1721
1726
1718 | 529
529
529
529
529 | 784
787
787
788
795 | 6,420
7,502
8,588
9,375
9,905 | 817
853
889
918
937 | 6,100
7,156
8,185
8,948
9,471 | 1130
1267
1396
1500
1568 | 1776
2076
2382
2621
2764 | 847
954
1054
1135
1188 | 1605
1869
2156
2372
2501 | 72.50
79.40
86.96
92.09
94.85 | 0.92
.99
1.06
1.12
1.15 | 0.976
.985
.999
1.006
1.005 | 1109
1602
2177
2658
2995 | 6796
7193
7593
7901
8096 | 3007
3875
4656
5395
5761 | | .791
.397
.403
.398
.401 | 1722
623
631
629
618 | 531
414
415
416
408 | 790
312
313
309
304 | 10,358
2,328
2,851
3,293
3,295 | 956
646
683
717
708 | 9,908
2,219
2,727
3,141
3,145 | 1634
918
1047
1164
1159 | 2889
651
792
908
910 | 1240
684
780
869
866 | 2619
592
718
825
826 | 97.16
29.79
33.74
36.69
35.78 | 1.17
.39
.43
.45
.44 | .998
.995
.976
.978 | 3340
375
588
793
812 | 8293
5993
6417
6796
6810 | 6225
1024
1412
1747
1817 | | .398
.398
.399
.398
.397 | 634
634
638
633
631 | 418
418
420
418
418 | 316
325
308
322
313 | 3,723
4,114
4,382
4,588
4,753 | 751
787
816
836
858 | 3,559
3,935
4,195
4,403
4,567 | 1283
1408
1511
1596
1686 | 1025
1142
1222
1293
1348 | 962
1057
1141
1209
1283 | 931
1038
1108
1168
1210 | 39.28
41.70
42.64
43.73
43.96 | .48
.48
.49
.51 | .973
.983
.992
.991
.992 | 1034
1285
1488
1672
1849 | 7194
7601
7892
8100
8291 | 2146
2447
2716
2811
2996 | | .196
.199
.193
.191
.198 | 306
310
299
295
307 | 413
412
410
409
410 | 148
140
151
141
139 | 1,102
1,399
1,406
1,640
1,678 | 647
687
689
724
726 | 1,054
1,340
1,347
1,572
1,607 | 1100
1105
1231
1240 | 304
391
392
457
468 | 704
819
830
925
935 | 275
352
355
416
420 | 13.90
16.14
16.17
17.91
17.98 | .19
.21
.21
.20
.23 | .955
.955
.994
.965 | 328
332
437
459 | 5915
6401
6436
6829
6852 | 508
767
694
903
952 | | .197
.196
.193
.192
.194 | 305
303
299
296
300
300 | 409
409
409
408
409
409 | 148
137
143
148
143 | 1,864
2,097
2,200
2,262
2,282
2,336 | 755
795
818
836
841
856 | 1,784
2,007
2,111
2,172
2,191
2,244 | 1356
1502
1591
1661
1680
1740 | 530
588
626
646
654
670 | 1025
1142
1213
1270
1286
1335 | 475
525
558
578
581
595 | 19.40
20.26
20.85
21.06
21.03
21.07 | .24
.24
.25
.24
.25
.20 | .982
.960
.960
.970
.955 | 574
741
838
902
927
992 | 7181
7643
7895
8071
8117
8263 | 1083
1286
1367
1386
1450
1439 | Figure 1. - J65-B3 Turbojet engine in altitude test chamber. Figure 2. - Schematic diagram of engine showing instrumentation stations. Figure 3. - Minimum corrected engine speed at which exhaust nozzle may be considered fully choked. Figure 4. - Effect of altitude on engine operational limits. Flight Mach number, 0.8; rated exhaust nozzle (1.97 sq ft). Figure 5. - Variation of corrected air flow with corrected engine speed for Reynolds number indices from 0.8 to 0.2 and exhaust-nozzle areas from 1.90 to 2.51 square feet. Figure 6. - Engine pumping characteristics at an inlet Reynolds number index of 0.4. 1.0 Figure 7. - Effect of Reynolds number index on engine pumping characteristics. .2 .4 .6 .8 Reynolds number index, Rei Figure 8. - Correlation of jet thrust for Reynolds number indices from 0.8 to 0.2 and exhaust-nozzle areas from 1.90 to 2.51 square feet. Figure 9. - Correlation of combustion efficiency for Reynolds number indices from 0.8 to 0.2 and exhaust-nozzle areas from 1.90 to 2.51 square feet. The state of s Figure 10. - Engine performance maps. Flight Mach number, 0.7. 8600 8200 g B Exhaust-gas total temperature, Tg, 900 6200 6600 7000 Engine speed, N, rpm (b) Altitude, 35,000 feet. 7400 Figure 10. - Continued. Engine performance maps. Flight Mach number, 0.7. 7800 Figure 10. - Concluded. Engine performance maps. Flight Mach number, 0.7. Figure 11. - Altitude performance calculated from pumping characteristics for rated exhaust-nozzle area. Figure 11. - Continued. Altitude performance calculated from pumping characteristics for rated exhaust-nozzle area. Figure 11. - Continued. Altitude performance calculated from pumping characteristics for rated exhaust-nozzle area. Figure 11. - Continued. Altitude performance calculated from pumping characteristics for rated exhaust-nozzle area. Figure 11. - Continued. Altitude performance calculated from pumping characteristics for rated exhaust-nozzle area. Figure 11. - Concluded. Altitude performance calculated from pumping characteristics for rated exhaust-nozzle area. Figure 12. - Ideal fuel-air ratio as a function of engine temperature rise. ### OVER-ALL PERFORMANCE OF J65-B3 TURBOJET ENGINE FOR REYNOLDS NUMBER INDICES FROM 0.8 TO 0.2 David B. Fenn Aeronautical Research Scientist Propulsion Systems David B Fenn William L. Jones Aeronautical Research Facilities Engineer Approved: W. A. Fleming Aeronautical Research Scientist Propulsion Systems Bruce T. Lundin Chief Engine Research Division maa - 3/9/55